Package ‘IHWpaper’
June 27, 2024

Title Reproduce figures in IHW paper
Version 1.32.0
Description This package conveniently wraps all functions needed to reproduce the figures in the IHW paper (https://www.nature.com/articles/nmeth.3885) and the data analysis in https://rss.onlinelibrary.wiley.com/doi/10.1111/rssb.12411, cf. the arXiv preprint (http://arxiv.org/abs/1701.05179). Thus it is a companion package to the Bioconductor IHW package.

Depends R (>= 3.3), IHW
License Artistic-2.0
LazyData true
LinkingTo Rcpp
Imports Rcpp, stats, splines, methods, utils, DESeq2, SummarizedExperiment, fdrtool, genefilter, qvalue, Biobase, BiocGenerics, BiocParallel, dplyr, grid, ggplot2, cowplot
VignetteBuilder knitr
biocViews ReproducibleResearch, ExperimentData, RNASeqData, ExpressionData
RoxygenNote 7.1.2
Suggests testthat, RColorBrewer, wesanderson, scales, gridExtra, BiocStyle, knitr, rmarkdown, airway, locfdr, tidyr, latex2exp
NeedsCompilation yes
Author Nikos Ignatiadis [aut, cre]
Maintainer Nikos Ignatiadis <nikos.ignatiadis01@gmail.com>

4
Contents

analyze_dataset .. 2
bh ... 3
bonf ... 3
clfdr ... 4
continuous_wrap .. 5
ddhf ... 5
du_ttest_sim .. 6
gbh ... 7
ihw_naive ... 8
lsr_pi0_est .. 10
null_sim .. 10
pretty_legend ... 11
runevals ... 12
scott_fdrreg ... 13
storey_qvalue .. 14
stratified_bh ... 15
tst_pi0_est .. 16
wasserman_normal_prds_sim 16
wasserman_normal_sim .. 17

analyze_dataset

Description

`analyze_dataset`: Basically performs preprocessing and then returns analyzed RNASeq dataset (diff. expression), i.e. the DESeq2 result whose p-values and baseMean statistics can then be used with IHW.

Usage

```r
analyze_dataset(dataset = c("airway", "bottomly", "hammer"), res = TRUE)
```

Arguments

- **dataset**: Character, name of dataset to be preprocessed, only 3 choices currently available ("airway", "bottomly", "hammer")
- **res** (default TRUE): return result table, rather than DESeq2 object

Value

Preprocessed dataset
bh

bh: Wrapper for Benjamini Hochberg

Description

bh: Wrapper for Benjamini Hochberg

Usage

bh(unadj_p, alpha)

Arguments

unadj_p Numeric vector of unadjusted p-values.
alpha Significance level at which to apply method

Value

BH multiple testing object

Examples

sim_df <- du_ttest_sim(20000, 0.95, 1.5)
obj <- bh(sim_df$pvalue, .1)
sum(rejected_hypotheses(obj))

bonf

bonf: Wrapper for Bonferroni

Description

bonf: Wrapper for Bonferroni

Usage

bonf(unadj_p, alpha)

Arguments

unadj_p Numeric vector of unadjusted p-values.
alpha Significance level at which to apply method
Value

Bonferroni multiple testing object

Examples

```r
sim_df <- du_ttest_sim(20000, 0.95, 1.5)
obj <- bonf(sim_df$pvalue, .1)
sum(rejected_hypotheses(obj))
```

clfd

clfd: Cai’s local fdr based method

Description

clfdr: Cai’s local fdr based method

Usage

```r
clfdr(unadj_p, groups, alpha, lfdr_estimation = "fdrtool")
```

Arguments

- `unadj_p`: Numeric vector of unadjusted p-values.
- `groups`: Factor to which different hypotheses belong.
- `alpha`: Significance level at which to apply method.
- `lfdr_estimation`: Method used to estimate the local fdr, defaults to "fdrtool".

Value

Clfd multiple testing object

References

Examples

```r
sim_df <- du_ttest_sim(20000, 0.95, 1.5)
sim_df$group <- groups_by_filter(sim_df$filterstat, 20)
obj <- clfdr(sim_df$pvalue, sim_df$group, .1)
sum(rejected_hypotheses(obj))
```
continuous_wrap

Benchmarking wrapper: Given a multiple testing method, convert it so that it takes a simulation object (see simulation function) and a nominal level alpha as inputs

Description

Benchmarking wrapper: Given a multiple testing method, convert it so that it takes a simulation object (see simulation function) and a nominal level alpha as inputs

Usage

```r
continuous_wrap(mt_method, nbins = 20)
```

Arguments

- `mt_method`: Multiple testing method (e.g. a function such as gbh or ddhf)
- `nbins`: Integer, number of equally sized bins into which to stratify hypotheses

Value

A new multiple testing function which has an interface of the form `f(sim_data_frame, alpha)`

Examples

```r
sim_df <- du_ttest_sim(20000, 0.95, 1.5)
sim_df$group <- groups_by_filter(sim_df$filterstat, 20)
obj <- tst_gbh(sim_df$pvalue, sim_df$group, .1)
sum(rejected_hypotheses(obj))

obj2 <- tst_gbh_continuous(sim_df, .1)
sum(rejected_hypotheses(obj2))
```

ddhf

ddhf: Greedy independent filtering

Description

ddhf: Greedy independent filtering

Usage

```r
ddhf(unadj_p, filterstat, alpha)
```
Arguments

- `unadj_p` Numeric vector of unadjusted p-values.
- `filterstat` Factor to which different hypotheses belong
- `alpha` Significance level at which to apply method

Value

DDHF multiple testing object

Examples

```r
sim_df <- du_ttest_sim(20000, 0.95, 1.5)
obj <- ddhf(sim_df$pvalue, sim_df$filterstat, .1)
sum(rejected_hypotheses(obj))
```

Description

`t-test simulation: Simulate rowwise t-tests`

Usage

```r
du_ttest_sim(
    m,
    pi0,
    effect_size,
    n_samples = 10,
    uninformative_filter = FALSE,
    seed = NULL
)
du_ttest_sim_fun(
    m,
    pi0,
    effect_size,
    n_samples = 10,
    uninformative_filter = FALSE
)
```
Arguments

- **m**
 Integer, total number of hypotheses

- **pi0**
 Numeric, proportion of null hypotheses

- **effect_size**
 Numeric, the alternative hypotheses will be

- **n_samples**
 Integer, number of samples for t-test, i.e. the comparison will be n_samples/2 vs n_samples/2

- **uninformative_filter**
 Boolean, if TRUE will generate uniformly distributed filter statistic Otherwise will use the pooled standard deviations

- **seed**
 Integer, Random seed to be used for simulation (default: NULL, i.e. RNG state will be used as is)

Value

A data frame containing all information about the simulation experiment

Functions

- **du_ttest_sim_fun**
 Creates a closure function for a given seed

Examples

```r
sim_df <- du_ttest_sim(20000, 0.95, 1.5)
```

gbh

gbh: Grouped Benjamini Hochberg

Description

gbh: Grouped Benjamini Hochberg

tst_gbh: wrapper for gbh with method="TST" lsl_gbh: wrapper for gbh with method="LSL"

Usage

```r
gbh(unadj_p, groups, alpha, method = "TST", pi0_global = "weighted_average")
tst_gbh(unadj_p, groups, alpha, ...)
lsl_gbh(unadj_p, groups, alpha, ...)
```
Arguments

unadj_p Numeric vector of unadjusted p-values.
groups Factor to which different hypotheses belong
alpha Significance level at which to apply method
method What pi0 estimator should be used (available "TST", "LSL")
pi0_global GBH requires also a pi0 estimate for the marginal p-value distribution. Can either apply pi0 estimation method to all p-values (pi0_global="global") or use a weighted average (pi0_global="weighted_average") of the pi0 estimates within each stratum. This is not explicitly stated in the paper, but based on a reproduction of their paper figures it seems to be the weighted_average.

Additional arguments passed from tst_gbh/lsl_gbh to gbh

Value

GBH multiple testing object

Functions

• tst_gbh: Wrapper of GBH with TST pi0 estimator
• lsl_gbh: Wrapper of GBH with LSL pi0 estimator

References

Examples

sim_df <- du_ttest_sim(20000, 0.95, 1.5)
sim_df$group <- groups_by_filter(sim_df$filterstat, 20)
obj <- tst_gbh(sim_df$pvalue, sim_df$group, .1)
sum(rejected_hypotheses(obj))
ihw_naive

Usage

ihw_naive(unadj_p, filterstat, alpha)

ihw_ecdf_5fold(unadj_p, filterstat, alpha)

ihw_5fold(unadj_p, filterstat, alpha)

ihw_5fold_reg(unadj_p, filterstat, alpha)

ihw_bonf_5fold_reg(unadj_p, filterstat, alpha)

ihw_storey_5fold(unadj_p, filterstat, alpha)

Arguments

unadj_p Numeric vector of unadjusted p-values.
filterstat Factor to which different hypotheses belong
alpha Significance level at which to apply method

Details

These are closures, which apply IHW with custom prespecified parameters. These correspond to interesting settings, for which it is convenient to be able to immediately call the corresponding functions, rather than having to specify parameters each time. Thus they make it easier to benchmark. All of these wrappers are defined in 2 lines of code, so the settings pertaining to each one can be inspected by typing the functions name into the console.

Value

ihwResult multiple testing object

Functions

• ihw_naive: IHW naive
• ihw_ecdf_5fold: IHW (E2) with 5 folds
• ihw_5fold: IHW (E1-E2) with 5 folds
• ihw_5fold_reg: IHW (E1-E2-E3) with 5 folds
• ihw_bonf_5fold_reg: IHW-Bonferroni (E1-E2-E3) with 5 folds
• ihw_storey_5fold: IHW (E1-E2) with 5 folds and Storey's pi0 estimator

Examples

sim_df <- du_ttest_sim(20000, 0.95, 1.5)
obj <- ihw_5fold(sim_df$pvalue, sim_df$filterstat, .1)
sum(rejected_hypotheses(obj))
lsl_pi0_est

LSL (Least-Slope) pi0 estimator

Description

LSL (Least-Slope) pi0 estimator

Usage

```r
lsl_pi0_est(pvalue)
```

Arguments

- `pvalue` Numeric vector of unadjusted p-values.

Value

Estimated proportion of null hypotheses (pi0)

Examples

```r
sim_df <- du_ttest_sim(20000, 0.95, 1.5)
lsl_pi0_est(sim_df$pvalue)
```

null_sim

Null simulation: Generate uniformly distributed p-values and covariates

Description

Null simulation: Generate uniformly distributed p-values and covariates

Usage

```r
null_sim(m, seed = NULL)

null_sim_fun(m)
```

Arguments

- `m` Integer, total number of hypotheses
- `seed` Integer, Random seed to be used for simulation (default: NULL, i.e. RNG state will be used as is)
pretty_legend

Value

A data frame containing all information about the simulation experiment

Functions

• null_sim_fun: Creates a closure function for a given seed

Examples

sim_df <- null_sim(20000)

pretty_legend

helper function to create nice legends

Description

helper function to create nice legends

Usage

pretty_legend(gg, last_vals, xmin, fontsize = 13)

Arguments

<table>
<thead>
<tr>
<th>gg</th>
<th>ggplot2 object</th>
</tr>
</thead>
<tbody>
<tr>
<td>last_vals</td>
<td>data frame with columns label, colour, last_vals (i.e. place label with colour at y-coordinate last_vals)</td>
</tr>
<tr>
<td>xmin</td>
<td>Numeric, x axis position at which labels should be placed</td>
</tr>
<tr>
<td>fontsize</td>
<td>Integer, fontsize</td>
</tr>
</tbody>
</table>

Value

Another ggplot2 object

This replaces the default legend of a ggplot2 object. In particular, given a ggplot2 object, it removes the existing legend and then places new labels based on the annotation data frame 'last_vals' (see parameter description) at a given x-coordinate of the original plot.

This function can be attributed to and is described in more detail in the following blog post: http://www.r-bloggers.com/coloring-and-drawing-outside-the-lines-in-ggplot/
Examples

```r
library("ggplot2")
labels <- c("A","B","C")
mypoints <- rbind(data.frame(y=1:3, x=1, label=as.factor(labels)),
                   data.frame(y=2:4, x=2, label=as.factor(labels)))
mycolours <- c("#F8766D","#00BA38","#619CFF")

gg <- ggplot(mypoints,aes(x=x,y=y,color=label)) +
          geom_line(size=2) +
          scale_color_manual(values=mycolours) +
          xlim(c(0,2.2))

annotation_df <- data.frame(colour=mycolours, last_vals=2:4, label=labels)
pretty_legend(gg, annotation_df, 2.1)
```

run_evals

run_evals: Main function to benchmark FDR methods on given simulations.

Description

run_evals: Main function to benchmark FDR methods on given simulations.

Usage

```r
run_evals(sim_funs, fdr_methods, nreps, alphas, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sim_funs</td>
<td>List of simulation settings</td>
</tr>
<tr>
<td>fdr_methods</td>
<td>List of FDR controlling methods to be benchmarked</td>
</tr>
<tr>
<td>nreps</td>
<td>Integer, number of Monte Carlo replicates for the simulations</td>
</tr>
<tr>
<td>alphas</td>
<td>Numeric, vector of nominal significance levels at which to apply FDR controlling methods</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments passed to sim_fun_eval</td>
</tr>
</tbody>
</table>

Details

This is the main workhorse function which runs all simulation benchmarks for IHWpaper. It receives input as described above, and the output is a data.frame with the following columns:

- **fdr_method**: Multiple testing method which was used
- **fdr_pars**: Custom parameters of the multiple testing method
- **alpha**: Nominal significance level at which the benchmark was run
- **FDR**: False Discovery Rate of benchmarked method on simulated dataset
- **power**: Power of benchmarked method on simulated dataset
• rj_ratio: Average rejections divided by total number of hypotheses
• FPR: False positive rate of benchmarked method on simulated dataset
• FWER: Familywise Error Rate of benchmarked method on simulated dataset
• nsuccessful: Number of successful evaluations of the method
• sim_method: Simulation scenario under which benchmark was run
• m: Total number of hypotheses
• sim_pars: Custom parameters of the simulation scenario

Value
data.frame which summarizes results of numerical experiment

Examples

nreps <- 3 # monte carlo replicates
ms <- 5000 # number of hypothesis tests
eff_sizes <- c(2,3)
sim_funs <- lapply(eff_sizes,
function(x) du_ttest_sim_fun(ms,0.95,x, uninformative_filter=FALSE))
continuous_methods_list <- list(bh,
lsl_gbh,
clfdr,
ddhf)
fdr_methods <- lapply(continuous_methods_list, continuous_wrap)
eval_table <- run_evals(sim_funs, fdr_methods, nreps, 0.1, BiocParallel=FALSE)

scott_fdrreg scott_fdrreg: Wrapper for FDR regression
(https://github.com/jgscott/FDRreg)

Description

Usage
scott_fdrreg(unadj_p, filterstat, alpha, df = 3, lambda = 0.01)

Arguments
unadj_p Numeric vector of unadjusted p-values.
filterstat Factor to which different hypotheses belong
alpha Significance level at which to apply method
df Degrees of freedom for B-slines
lambda Ridge regularization parameter
Value

FDRreg multiple testing object

References

storey_qvalue: Wrapper for Storey’s qvalue package

Description

storey_qvalue: Wrapper for Storey’s qvalue package

Usage

storey_qvalue(unadj_p, alpha)

Arguments

unadj_p Numeric vector of unadjusted p-values.
alpha Significance level at which to apply method

Value

StoreyQValue multiple testing object

Examples

```r
sim_df <- du_ttest_sim(20000, 0.95, 1.5)
obj <- storey_qvalue(sim_df$pvalue, .1)
sum(rejected_hypotheses(obj))
```
stratified_bh

stratified_bh: Stratified Benjamini Hochberg

Description

stratified_bh: Stratified Benjamini Hochberg

Usage

\[
\text{stratified_bh}(\text{unadj_p, groups, alpha})
\]

Arguments

- **unadj_p**: Numeric vector of unadjusted p-values.
- **groups**: Factor to which different hypotheses belong.
- **alpha**: Significance level at which to apply method.

Value

SBH multiple testing object

References

Examples

```r
sim_df <- du_ttest_sim(20000,0.95, 1.5)
sim_df$group <- groups_by_filter(sim_df$filterstat, 20)
obj <- stratified_bh(sim_df$pvalue, sim_df$group, .1)
sum(rejected_hypotheses(obj))
```
tst_pi0_est

TST (Two-Step) pi0 estimator

Description

TST (Two-Step) pi0 estimator

Usage

tst_pi0_est(pvalue, alpha)

Arguments

pvalue

Numeric vector of unadjusted p-values.

alpha

Nominal level for applying the TST procedure

Value

estimated proportion of null hypotheses (pi0)

Examples

sim_df <- du_ttest_sim(20000,0.95, 1.5)
tst_pi0_est(sim_df$pvalue, .1)

wasserman_normal_prds_sim

Normal PRDS simulation: Covariate is effect size under alternative, there are latent factors driving PRDS correlations among hypotheses

Description

Normal PRDS simulation: Covariate is effect size under alternative, there are latent factors driving PRDS correlations among hypotheses

Usage

wasserman_normal_prds_sim(
 m,
 pi0,
 rho = 0,
 latent_factors = 1,
 xi_min = 0,
 xi_max = 2.5,
 seed = NULL
)
wasserman_normal_sim

Arguments

m Integer, total number of hypotheses
pi0 Numeric, proportion of null hypotheses
rho Numeric, correlation between z-scores of hypotheses driven by same latent factor
latent_factors Integer, number of latent factors driving the correlations
xi_min, xi_max Numeric, covariates are drawn as uniform on xi_min, xi_max
seed Integer, Random seed to be used for simulation (default: NULL, i.e. RNG state will be used as is)

Value
A data frame containing all information about the simulation experiment

Functions

• wasserman_normal_prds_sim_fun: Creates a closure function for a given seed

Examples

sim_df <- wasserman_normal_prds_sim(20000, 0.9, rho=0.1)

Description
Normal simulation: Covariate is effect size under alternative

Usage

wasserman_normal_sim(m, pi0, xi_min, xi_max, seed = NULL)
wasserman_normal_sim_fun(m, pi0, xi_min, xi_max)
Arguments

- \(m \) Integer, total number of hypotheses
- \(\pi_0 \) Numeric, proportion of null hypotheses
- \(xi_{\text{min}}, xi_{\text{max}} \) Numeric, covariates are drawn as uniform on \(xi_{\text{min}}, xi_{\text{max}} \)
- \(seed \) Integer, Random seed to be used for simulation (default: NULL, i.e. RNG state will be used as is)

Value

A data frame containing all information about the simulation experiment

Functions

- \texttt{wasserman_normal_sim_fun}: Creates a closure function for a given seed

Examples

\[\text{sim_df} \leftarrow \text{wasserman_normal_sim}(20000,0.9,1,5) \]
Index

analyze_dataset, 2
bh, 3
bonf, 3
c1fdr, 4
continuous_wrap, 5
ddhf, 5
du_ttest_sim, 6
du_ttest_sim_fun (du_ttest_sim), 6
gbh, 7
ihw_5fold (ihw_naive), 8
ihw_5fold_reg (ihw_naive), 8
ihw_bonf_5fold_reg (ihw_naive), 8
ihw_ecdf_5fold (ihw_naive), 8
ihw_naive, 8
ihw_storey_5fold (ihw_naive), 8
lsl_gbh (gbh), 7
lsl_pi0_est, 10
null_sim, 10
null_sim_fun (null_sim), 10
pretty_legend, 11
run_evals, 12
scott_fdrreg, 13
storey_qvalue, 14
stratified_bh, 15
tst_gbh (gbh), 7
tst_pi0_est, 16
wasserman_normal_prds_sim, 16
wasserman_normal_prds_sim_fun
 (wasserman_normal_prds_sim), 16
wasserman_normal_sim, 17
wasserman_normal_sim_fun
 (wasserman_normal_sim), 17