Package ‘RNAinteractMAPK’

July 30, 2024

Type Package

Title Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi

Version 1.42.0

Description This package includes all data used in the paper -Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi- by Horn, Sandmann, Fischer et al., Nat. Methods, 2011. The package vignette shows the R code to reproduce all figures in the paper.

License Artistic-2.0

LazyLoad yes

Imports grid, gdata, MASS, genefilter, methods, fields, utils, lattice, Biobase

Depends R (>= 2.12.0), sparseLDA, RNAinteract

Suggests qvalue

biocViews ExperimentData, MicrotitrePlateAssayData, Drosophila_melanogaster_Data, CellCulture

git_url https://git.bioconductor.org/packages/RNAinteractMAPK
git_branch RELEASE_3_19
git_last_commit a6f34ff
git_last_commit_date 2024-04-30

Repository Bioconductor 3.19

Date/Publication 2024-07-30

Author Bernd Fischer [aut], Wolfgang Huber [ctb], Mike Smith [cre]

Maintainer Mike Smith <mike.smith@embl.de>
Contents

RNAinteractMAPK-package ... 2
cellTiterGlo ... 4
Dmel2PPMAPK ... 5
dsRNAiDilutionSeries ... 5
ElpB1phenotype ... 6
MAPK.cv.classifier ... 7
MAPK.estimate.TPS ... 9
MAPK.plot.heatmap.raster ... 10
MAPK.report.gene.lists.paper ... 11
MAPK.smooth.scatter ... 12
mRNAdoubleKDefficiency .. 13
mRNAsingleKDefficiency .. 14
Networks .. 14
pathwayMembership ... 15
PhysicalInteractions ... 16
singleKDphenotype ... 16

Index 18

RNAinteractMAPK-package

Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi.

Description

The package contains the data and the source code to reproduce the results and figures from the paper

Details

See vignette("RNAinteractMAPK") for details.

Package content

See vignette("RNAinteractMAPK") for more detail on how to obtain the data used for specific figures. In addition this vignette contains the complete analysis and the generation of all figures.

The main screen can be loaded by data("Dmel2PPMAPK", package="RNAinteractMAPK"). Access to the pairwise interaction data is done via the getData function from the RNAinteract-package. See example below.

The following datasets are provided with this package:

Dmel2PPMAPK interaction data of main screen. See example below.
Within this package a number of specialized functions is defined written for the analysis of the MAPK interaction screen and additional experiments shown in the paper. These functions are not intended to be general purpose analysis functions, but should document the steps of analysis of the paper. Therefore, these functions are not exported. A list of functions is given below. A general purpose package for the analysis of genetic interaction screens is the package RNAinteract.

The following functions are provided within this package.

Functions used for the classification: MAPK.predict.classification, MAPK.cv.classifier, MAPK.getCV, MAPK.ternary.plot, MAPK.getXY, MAPK.plot.classification.

Functions for the analysis of the interaction surfaces: MAPK.plot.TPS.single, MAPK.plot.TPS.all, MAPK.estimate.TPS, MAPK.cv.TPS, MAPK.screen.as.array.

A function to write the hit list: MAPK.report.gene.lists.paper.

A function to plot a heatmap: MAPK.plot.heatmap.raster.

A function to plot smooth scatters: MAPK.smooth.scatter.

Author(s)

Bernd Fischer

Maintainer: Bernd Fischer <bernd.fischer@embl.de>

References

See Also

RNAinteractMAPK-package

Examples

data(Dmel2PPMAPK)

Dmel2PPMAPK

Obtain the pairwise interaction matrix
PI <- getData(Dmel2PPMAPK, type="pi", format="targetMatrix",
screen="mean", withoutgroups = c("pos", "neg"))
cellTiterGlo

Comparison of interaction experiment with an cellTiterGlo viability assay

Description

For ten gene pairs genetic interactions are measured. The experiment contains 24 different conditions. These are repeated in each row of the three 384 mutli well plates. The data.frame contains the plate annotation as well as the viability readout for the three plates.

Usage

data(cellTiterGlo)

Format

A data frame with 384 observations on the following 6 variables.

Well a character vector
dsRNA_1 a character vector
dsRNA_2 a character vector
plate1 a numeric vector
plate2 a numeric vector
plate3 a numeric vector

Source

Horn, Sandmann, Fischer, Huber, Boutros, Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi, Nature Methods, 2011, Figure S15.

Examples

data(cellTiterGlo)
head(cellTiterGlo)
Dmel2PPMAPK

The interaction data of the main screen

Description

Dmel2PPMAPK is an object of class `RNAinteract`. It contains the raw data, the computed main effects, pairwise interaction scores, p-values and q-values computed by a t-test. The package vignette contains the complete code and documentation for the statistical analysis.

Usage

```r
data(Dmel2PPMAPK)
```

Format

An object of class `RNAinteract`.

Source

Examples

```r
data(Dmel2PPMAPK)
Dmel2PPMAPK

# Obtain the pairwise interaction matrix
PI <- getData(Dmel2PPMAPK, type="pi", format="targetMatrix",
screen="mean", withoutgroups = c("pos", "neg"))
```

dsRNAiDilutionSeries

dsRNA dilution series

Description

A dilution series for 6 x 6 gene. For each gene pair all combinations of 8 different concentrations of dsRNA reagent are screened. Three readout channels (nrCells, area, intensity) are available in the data.frame `dsRNAiDilutionSeries`. The plate annotation is given in the data.frame `dsRNAiDilutionSeriesAnno` and precomputed degrees of freedom for thin plate splines are available in the matrix `dsRNAiDilutionSeriesDF`.

Usage

```r
data(dsRNAiDilutionSeries)
```
ElpB1phenotype

Ectopic wing vein formation phenotype caused by the EgfrElpB1.

Description

Partial suppression of ectopic wing vein formation (in vivo fly phenotype) caused by the EgfrElpB1 in Cka heterozygous mutant backgrounds. The wing vein formation phenotype is classified as strong and not strong. It is tested for three fly mutants.

Usage

data(ElpB1phenotype)
MAPK.cv.classifier

Format
A data frame with 3 observations on the following 2 variables.

strong a numeric vector
notstrong a numeric vector

Source
Horn, Sandmann, Fischer, Huber, Boutros, Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi, Nature Methods, 2011, Figure 5f.

Examples
data(ElpB1phenotype)
ElpB1phenotype

MAPK.cv.classifier A classifier for genetic interaction data.

Description
These functions implement a classifier to classify three classes of pathway membership of the RasMAPK and JNK pathway. For each sample and each channel a sparse linear discriminant classifier is trained. The posterior probabilities are averaged over all single classifiers. The classification posterior probabilities of three classes are plotted as a ternary plot (ternary plot adapted from CRAN package vcd).

Usage
MAPK.cv.classifier(sgi, traingroups)
MAPK.predict.classification(sgi, traingroups)
MAPK.plot.classification(posterior,
classes = NULL, classnames = NULL,
col = "darkgray", y = NULL,
classcol = NULL,
main = "predicted classification probabilities",
pop = TRUE, threshText = 0.3,
textToLeft = NULL, textToRight = NULL)

Arguments

sgi An object of class RNAinteract
traingroups A list of gene names for the training examples. For each class there should be a vector of gene names.
posterior A matrix of posterior probabilities. Each row represents one gene, each column represents one class.
classes The three classes to be displayed on the ternary plot.
classnames The class names to be displayed.
col The color used for the text labels.
y A factor representing the class label for each gene in posterior.
classcol The color used for the three classes.
main The title of the plot.
pop If TRUE, all viewports are popped before finishing the function.
threshText A threshold for the posterior probability of the three classes. Only genes that are assigned with a larger probability to the three classes are shown.
textToLeft These text labels will be shown on the left hand side.
textToRight These text labels will be shown on the right hand side.

Details

The code for the ternary plot (used by MAPK.cv.classifier) is adapted from the function ternaryplot in the CRAN package vcd Author of the original code is David Meyer (David.Meyer@R-project.org). References: M. Friendly (2000), Visualizing Categorical Data. SAS Institute, Cary, NC. This code is specialized for the publication "Mapping Signalling Networks by RNAi ..." in Nat. Methods. It is highly recommended to use the original code by David Meyer.

Value

MAPK.cv.classifier returns a list with the cross validated class assignment probability, as well as the results of the single classifiers.

MAPK.predict.classifier returns the predicted posterior probabilities of new genes as well as the classification results of the single classifier.

MAPK.plot.classifier returns nothing.

Author(s)

Bernd Fischer

References

See Also

RNAinteract, RNAinteractMAPK
Description

Genetic interaction surfaces are estimated from a dilution experiment. Cells are treated with two RNAi’s. The concentration of the RNAi reagent is changed in 8 steps. All 8 x 8 combinations of concentrations are tested for 6 x 6 gene pairs.

Usage

MAPK.screen.as.array(data, Anno)
MAPK.estimate.TPS (A, DF, n.out = 8, channel = 1)
MAPK.cv.TPS (A, range.df = 6:56, channel = 1)
MAPK.plot.TPS.all (TPSmodel, range = c(-6, 6), fill = c("cornflowerblue", "cornflowerblue", "black", "#777700", "yellow"), channel = 1)
MAPK.plot.TPS.single(gene1, gene2, TPSmodel, range = c(-6, 6), fill = c("cornflowerblue", "cornflowerblue", "black", "#777700", "yellow"), channel = 1)

Arguments

data, Anno

data
A data.frame containing the read.out of the dilution screen. Each row is one well. Each column one feature.

Anno
A data.frame containing the plate configuration. For each row in data there should a row in Anno.

A
An array of dimension concentration x concentration x genes x genes x channel as returned by MAPK.screen.as.array.

DF
A 6 x 6 matrix of degrees of freedom for the thin spline plate regression.

n.out
number of points for sampling from the regression function.

channel
The channel used.

range.df
The range of degrees of freedom that is considered for cross validation.

range
The range of pairwise interaction scores that is shown by the colorbar.

gene1, gene2
The genes for which the interaction surface is plotted.

TPSmodel
The TPS model estimated by MAPK.estimate.TPS

fill
The range of colors used for the color code.
Details
The screen readout can be reshaped as an array with dimensions concentration x concentration x
genesis x genes x channel by the function MAPK.screen.as.array. Then the function MAPK.estimate.TPS
fits a regression in the 8 x 8 pairwise dilution series. The degrees of freedom for the regression can
be estimated automatically by cross validation with the function MAPK.cv.TPS. Finally one can plot
the interaction surface for a single gene or an overview of interaction surfaces for all genes with the
functions MAPK.plot.TPS.single or MAPK.plot.TPS.all.

Value
• MAPK.screen.as.array returns an array of dimensions concentration x concentration x genes
 x genes x channel with the screen data.
• MAPK.estimate.TPS returns a regression model estimated by thin plate splines for each pair
 of genes and subsampled matrices.
• MAPK.cv.TPS.all returns
 - DF a matrix with degrees of freedom.
 - CVerror The prediction error estimated by cross validation.
 - CVerrorSD The standard deviation of the prediction error estimated by cross validation.
• MAPK.plot.TPS.single, MAPK.plot.TPS.all: An object of class "trellis". See levelplot
 for details.

Author(s)
Bernd Fischer

See Also
RNAinteract-package, RNAinteractMAPK-package

Useage
MAPK.plot.heatmap.raster(X, subset = NULL,
 hc.row = NULL, hc.col = NULL,
 pi.max = NULL)

Plots a heatmap using grid.raster

Description
This functions provides a grid plot that displays the raster image of a heatmap without any axis or la-
bel. This function is adapted from the function grid.sgiHeatmap from the package RNAinteract-package.
It is highly recommended to use the original function grid.sgiHeatmap.
Arguments

- **X**: A matrix of pairwise interaction scores.
- **subset**: A subset of genes that are displayed in the rows.
- **hc.row**: A hclust object.
- **hc.col**: A hclust object.
- **pi.max**: The maximum interaction score of the colorbar. All interaction scores larger than this value will be displayed in the same color.

Value

Nothing is returned.

Author(s)

Bernd Fischer

See Also

RNAinteract-package, RNAinteractMAPK-package

Description

Reports the hitlist of genetic interactions, with p-values from a t-test with pooled variance estimate, from limma, and from Hotelling T^2 test.

Usage

MAPK.report.gene.lists.paper(sgi, sgilimma, sgi3T2, screen = "mean")

Arguments

- **sgi**: An object of class RNAinteract containing p-values from a t-test with pooled variance estimate.
- **sgilimma**: An object of class RNAinteract containing p-values from limma.
- **sgi3T2**: An object of class RNAinteract containing p-values from a Hotelling T^2 test.
- **screen**: The screen name for which the report should be written.

Details

Writes tab-separated lists for each single test as well as a joint table with all three tests.
Value

Nothing is returned.

Author(s)

Bernd Fischer

See Also

RNAinteract-package, RNAinteractMAPK-package

MAPK.smooth.scatter
smooth scatter using grid raster

Description

This function is a reimplementation of smoothScatter. For nicer graphics output the background image is written by grid.raster. It is recommended to use the smoothScatter function from the graphics package.

Usage

```r
MAPK.smooth.scatter(x, y, n = 75,
        nrpoints = 100, col = "blue",
        pch = 20, size = unit(0.3, "char"), cex = 1.2,
        colramp = colorRampPalette(c("white", "blue", "green", "yellow", "red"))(256),
        xlab = "", ylab = "", respect = FALSE)
```

Arguments

- `x`: x-values.
- `y`: y-values. Has to be the same length as `x`.
- `n`: nr of bins used for the kernel density estimation.
- `nrpoints`: nr of points in the lowest density region will be plotted. This allows the identification of outliers.
- `col`: color of points.
- `pch`: symbol to plot points.
- `size`: The size of the points.
- `cex`: The size of the label text.
- `colramp`: color ramp for the density plot.
- `xlab, ylab`: axis labels.
- `respect`: A logical value indicating if the height and width of the axis scales should respect each other.
mRNAdoubleKDefficiency

Details
Plots a density plot with grid graphics.

Author(s)
Bernd Fischer

See Also
RNAinteractMAPK-package, smoothScatter

mRNAdoubleKDefficiency

RNA levels for double knock downs

Description
qPCR measurements for the mRNA level after a double gene knock down (ratio relative to wild type control). The experiments tests the knock down efficiency in the presence of a second gene knock down.

Usage
data(mRNAdoubleKDefficiency)

Format
A data frame with 320 observations on the following 5 variables.

- template: an ordered factor with levels Fluc < CG10417 < CG13197 < CG9391 < egr < lic < PRL-1 < Rho1 < Tak1
- qPCR.target: a factor with levels CG10417 CG13197 CG9391 egr lic PRL-1 Rho1 Tak1
- passage: a factor with levels passage 4 passage 42
- RNAi: a numeric vector

Source
Horn, Sandmann, Fischer, Huber, Boutros, Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi, Nature Methods, 2011, Figure S2.

Examples
data(mRNAdoubleKDefficiency)
head(mRNAdoubleKDefficiency)
mRNAsingleKDefficiency

mRNA levels for single gene knock downs

Description

qPCR measurements for the mRNA level after a single gene knock down (ratio relative to wild type control). The experiments is done for two independent designs of RNAi reagents.

Usage

```r
data(mRNAsingleKDefficiency)
```

Format

A data frame with 89 observations on the following 5 variables.

- **Symbol**: a character vector
- **MeanDesign1**: a numeric vector
- **StderrDesign1**: a numeric vector
- **MeanDesign2**: a numeric vector
- **StderrDesign2**: a numeric vector

Source

Horn, Sandmann, Fischer, Huber, Boutros, Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi, Nature Methods, 2011, Figure S1.

Examples

```r
data(mRNAsingleKDefficiency)
head(mRNAsingleKDefficiency)
```

Networks

Knock interaction networks

Description

This dataset is a subset of the DroID database. It contains the known (genetic) interactions between the genes regarded in the main screen.

Usage

```r
data(Networks)
```

pathwayMembership

Format

A data frame with 402 observations on the following 5 variables.

- **gene1**: a character vector
- **gene2**: a character vector
- **correlation**: a numeric vector
- **genetic**: a numeric vector
- **human**: a numeric vector

Source

Data as used in Horn, Sandmann, Fischer, Huber, Boutros, Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi, Nature Methods, 2011, Figure S12.

The data is a subset from the drosophila interactions database (DroID), http://www.droidb.org, Data version 2010_10 updated 20 October 2010.

Examples

```r
data(Networks)
head(Networks)
```

Description

The membership of the tested genes in the four pathways JAK/STAT, RasMAPK, JNK, and p38.

Usage

```r
data(pathwayMembership)
```

Format

The format is: chr "pathwayMembership"

Source

Horn, Sandmann, Fischer, Huber, Boutros, Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi, Nature Methods, 2011, Figure S13.

Examples

```r
data(pathwayMembership)
head(pathwayMembership)
```
PhysicalInteractions Known physical interactions

Description
This dataset contains a collection of known physical interactions assembled from the literature. It contains the known pathway structure of the RasMAPK and the JNK pathway.

Usage
data(PhysicalInteractions)

Format
A data frame with 29 observations on the following 2 variables.

V1 a character vector
V2 a character vector

Source
Horn, Sandmann, Fischer, Huber, Boutros, Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi, Nature Methods, 2011, Figure S13.

Examples
data(PhysicalInteractions)
head(PhysicalInteractions)

singleKDphenotype Single knockdown phenotype

Description
This data.frame singleKDphenotype contains a screen assessing the single knock down phenotypes (nrCells, intensity, and area) of the tested genes. singleKDphenotypeAnno is a data.frame describing the plate annotation.

Usage
data(singleKDphenotype)

Format
The format is: chr "singleKDphenotype" chr "singleKDphenotypeAnno"
singleKDphenotype

Source

Horn, Sandmann, Fischer, Huber, Boutros, Mapping of Signalling Networks through Synthetic Genetic Interaction Analysis by RNAi, Nature Methods, 2011, Figure S3.

Examples

data(singleKDphenotype)
head(singleKDphenotype)
head(singleKDphenotypeAnno)
Index

* optionally other standard keywords, one per line, from file

KEYWORDS in the R ~~
RNAinteractMAPK-package, 2

* documentation directory ~~
RNAinteractMAPK-package, 2
datasets

cellTiterGlo, 4
Dmel2PPMAPK, 5
dsRNAiDilutionSeries, 5
ElpB1phenotype, 6
mRNAdoubleKDefficiency, 13
mRNAsingleKDefficiency, 14
Networks, 14
pathwayMembership, 15
PhysicalInteractions, 16
singleKDphenotype, 16
misc

MAPK.cv.classifier, 7
MAPK.cv.TPS (MAPK.estimate.TPS), 9
MAPK.estimate.TPS, 9
MAPK.plot.classification
(MAPK.cv.classifier), 7
MAPK.plot.heatmap.raster, 10
MAPK.plot.TPS.all (MAPK.estimate.TPS), 9
MAPK.plot.TPS.single
(MAPK.estimate.TPS), 9
MAPK.predict.classification
(MAPK.cv.classifier), 7
MAPK.report.gene.lists.paper, 11
MAPK.screen.as.array
(MAPK.estimate.TPS), 9
MAPK.smooth.scatter, 12
mRNAdoubleKDdeficiency, 3, 13
mRNAsingleKDdeficiency, 3, 14
Networks, 3, 14
pathwayMembership, 3, 15
PhysicalInteractions, 3, 16

RNAinteract, 2, 3, 5, 7, 8, 11
RNAinteractMAPK, 8
RNAinteractMAPK
(RNAinteractMAPK-package), 2
RNAinteractMAPK-package, 2

singleKDphenotype, 3, 16
singleKDphenotypeAnno
(singleKDphenotype), 16
smoothScatter, 12, 13

* package

RNAinteractMAPK-package, 2

* RNAinteractMAPK-package, 2
cellTiterGlo, 3, 4
Dmel2PPMAPK, 2, 5
dsRNAiDilutionSeries, 3, 5
dsRNAiDilutionSeriesAnno
(dsRNAiDilutionSeries), 5
dsRNAiDilutionSeriesDF
(dsRNAiDilutionSeries), 5
ElpB1phenotype, 3, 6
data, 2

graphics, 12
grid, 13
grid.raster, 12
grid.sgiHeatmap, 10
levelplot, 10

MAPK.cv.classifier, 7
MAPK.cv.TPS (MAPK.estimate.TPS), 9
MAPK.estimate.TPS, 9
MAPK.plot.classification
(MAPK.cv.classifier), 7
MAPK.plot.heatmap.raster, 10
MAPK.plot.TPS.all (MAPK.estimate.TPS), 9
MAPK.plot.TPS.single
(MAPK.estimate.TPS), 9
MAPK.predict.classification
(MAPK.cv.classifier), 7
MAPK.report.gene.lists.paper, 11
MAPK.screen.as.array
(MAPK.estimate.TPS), 9
MAPK.smooth.scatter, 12
mRNAdoubleKDdeficiency, 3, 13
mRNAsingleKDdeficiency, 3, 14
Networks, 3, 14
pathwayMembership, 3, 15
PhysicalInteractions, 3, 16

RNAinteract, 2, 3, 5, 7, 8, 11
RNAinteractMAPK, 8
RNAinteractMAPK
(RNAinteractMAPK-package), 2
RNAinteractMAPK-package, 2

singleKDphenotype, 3, 16
singleKDphenotypeAnno
(singleKDphenotype), 16
smoothScatter, 12, 13

* datasets

 cellTiterGlo, 4
 Dmel2PPMAPK, 5
 dsRNAiDilutionSeries, 5
 ElpB1phenotype, 6
 mRNAdoubleKDdeficiency, 13
 mRNAsingleKDdeficiency, 14
 Networks, 14
 pathwayMembership, 15
 PhysicalInteractions, 16
 singleKDphenotype, 16

* misc

 MAPK.cv.classifier, 7
 MAPK.estimate.TPS, 9
 MAPK.plot.heatmap.raster, 10
 MAPK.plot.TPS.all (MAPK.estimate.TPS), 9
 MAPK.plot.TPS.single
 (MAPK.estimate.TPS), 9
 MAPK.predict.classification
 (MAPK.cv.classifier), 7
 MAPK.report.gene.lists.paper, 11
 MAPK.screen.as.array
 (MAPK.estimate.TPS), 9
 MAPK.smooth.scatter, 12
 mRNAdoubleKDdeficiency, 3, 13
 mRNAsingleKDdeficiency, 3, 14
 Networks, 3, 14
 pathwayMembership, 3, 15
 PhysicalInteractions, 3, 16

* package

 RNAinteractMAPK-package, 2

* RNAinteractMAPK-package, 2

cellTiterGlo, 3, 4
Dmel2PPMAPK, 2, 5
dsRNAiDilutionSeries, 3, 5
dsRNAiDilutionSeriesAnno
(dsRNAiDilutionSeries), 5
dsRNAiDilutionSeriesDF
(dsRNAiDilutionSeries), 5
ElpB1phenotype, 3, 6
data, 2

graphics, 12
grid, 13
grid.raster, 12
grid.sgiHeatmap, 10
levelplot, 10

MAPK.cv.classifier, 7
MAPK.cv.TPS (MAPK.estimate.TPS), 9
MAPK.estimate.TPS, 9
MAPK.plot.classification
(MAPK.cv.classifier), 7
MAPK.plot.heatmap.raster, 10
MAPK.plot.TPS.all (MAPK.estimate.TPS), 9
MAPK.plot.TPS.single
(MAPK.estimate.TPS), 9
MAPK.predict.classification
(MAPK.cv.classifier), 7
MAPK.report.gene.lists.paper, 11
MAPK.screen.as.array
(MAPK.estimate.TPS), 9
MAPK.smooth.scatter, 12
mRNAdoubleKDdeficiency, 3, 13
mRNAsingleKDdeficiency, 3, 14
Networks, 3, 14
pathwayMembership, 3, 15
PhysicalInteractions, 3, 16

RNAinteract, 2, 3, 5, 7, 8, 11
RNAinteractMAPK, 8
RNAinteractMAPK
(RNAinteractMAPK-package), 2
RNAinteractMAPK-package, 2

singleKDphenotype, 3, 16
singleKDphenotypeAnno
(singleKDphenotype), 16
smoothScatter, 12, 13