Package ‘TimerQuant’

August 8, 2024

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Timer Quantification</td>
</tr>
<tr>
<td>Version</td>
<td>1.34.0</td>
</tr>
<tr>
<td>Date</td>
<td>2015-05-22</td>
</tr>
<tr>
<td>Author</td>
<td>Joseph Barry</td>
</tr>
<tr>
<td>Maintainer</td>
<td>Joseph Barry <joseph.barry@embl.de></td>
</tr>
<tr>
<td>Depends</td>
<td>shiny</td>
</tr>
<tr>
<td>Suggests</td>
<td>BiocStyle, reshape2, knitr, shinyBS</td>
</tr>
<tr>
<td>Imports</td>
<td>ggplot2, grid, gridExtra, deSolve, dplyr, locfit</td>
</tr>
<tr>
<td>VignetteBuilder</td>
<td>knitr</td>
</tr>
<tr>
<td>Description</td>
<td>Supplementary Data package for tandem timer methods paper by Barry et al. (2015) including TimerQuant shiny applications.</td>
</tr>
<tr>
<td>biocViews</td>
<td>ExperimentData, Danio_rerio_Data, HighThroughputImagingData, Tissue</td>
</tr>
<tr>
<td>License</td>
<td>Artistic-2.0</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
<tr>
<td>NeedsCompilation</td>
<td>no</td>
</tr>
<tr>
<td>git_url</td>
<td>https://git.bioconductor.org/packages.TimerQuant</td>
</tr>
<tr>
<td>git_branch</td>
<td>RELEASE_3_19</td>
</tr>
<tr>
<td>git_last_commit</td>
<td>4cfe4ce</td>
</tr>
<tr>
<td>git_last_commit_date</td>
<td>2024-04-30</td>
</tr>
<tr>
<td>Repository</td>
<td>Bioconductor 3.19</td>
</tr>
<tr>
<td>Date/Publication</td>
<td>2024-08-08</td>
</tr>
</tbody>
</table>

Contents

<table>
<thead>
<tr>
<th>File</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>analyticSolutions</td>
<td>2</td>
</tr>
<tr>
<td>fitCV</td>
<td>3</td>
</tr>
<tr>
<td>FRETdata</td>
<td>4</td>
</tr>
</tbody>
</table>
Analytic Solutions

Description

Time-dependent and steady-state analytic solution to one-step model for number of mature fluorophores. Where f is given as a parameter the returned value is transformed from a molecular population into a fluorescence intensity. For the function names, 0 refers to the dark population of non-mature fluorophores, and 1 to the mature, fluorescent population. ‘ss’ indicates steady-state solutions. t_{ss} is the time required to reach steady-state.

Usage

```r
# Time-dependent solutions
x1(p, m, k, t, f=1)
x1ss(p, m, k, f=1)
x1fretFP1(p, m1, m2, k, t, E=0, f=1)
x1fretFP1ss(p, m1, m2, k, E=0, f=1)
```

Arguments

- **p**: Protein production rate (molecules produced per unit time).
- **m**: Maturation rate of fluorophore, which can be for either FP1 or FP2 (convert to maturation time with $\log(2)/m$).
- **m1**: Maturation rate of FP1.
- **m2**: Maturation rate of FP2.
- **k**: Protein degradation rate (convert to half-life with $\log(2)/k$).
- **t**: Time (must be non-negative).
- **E**: FRET coefficient representing energy transfer from FP1 to FP2.
- **f**: Proportionality factor relating intensity to the number of molecules. When equal to one then the readout is number of molecules directly.
Value

A numeric specifying the model solution for the given parameters.

Author(s)

Joseph D. Barry

Examples

t0 <- seq(0.001, 1000, by=0.1)
plot(t0, x1(p=10, m=log(2)/5, k=log(2)/100, t=t0), type="l", col="darkgreen",
lwd=2, xlab="Time (min)", ylab="Number of mature fluorophores", cex.lab=1.4)

Description

Fits a smoothing line to coefficient of variation profiles.

Usage

fitCV(x, scaleLog10)

Arguments

x A dataframe with columns Time (FP maturation time) and CV (coefficient of variation of timer signal).
scaleLog10 A logical indicating whether the points are spaced on the log10 scale or not.

Value

A dataframe containing fitted values and the minimum CV of the profile.

Author(s)

Joseph D. Barry

Examples

if (interactive()) vignette(topic="genPaperFigures", package="TimerQuant")
FRET Data

Description

A three-dimensional array of dimensions FRET value x tFT x assay type containing FRET readouts.

Usage

FRETdata

generate ratio heatmap

Description

Visualize ratio ratios as a function of either FP1 or FP2 maturation time, and protein half-life.

Usage

genRatioHeatmap(tRangeFP, Tfixed, TA, TB, channel, E, f=1, n, ramp)

Arguments

tRangeFP Vector containing two numerics specifying the range of maturation times to display for the chosen fluorescence channel.
Tfixed The maturation time of the FP that will remain fixed.
TA tFT half-life in location A.
TB tFT half-life in location B.
channel Integer specifying fluorescence channel to be varied (1 or 2).
E FRET value representing transfer from FP1 to FP2.
f f=f2/f1, the ratio of prefactors relating the number of molecules to the fluorescence intensity.
n Integer specifying the number of data points. Choose a higher n for a higher pixel density.
ramp Colour ramp, see colorRampPalette for more details.

Value

Returns a ggplot2 heatmap.

Author(s)

Joseph D. Barry
Examples

if (interactive()) vignette(topic="genPaperFigures", package="TimerQuant")

genTimeSteadyStateHeatmap

Time to reach steady-state

Description

Visualize the time to reach steady-state as a function of FP2 maturation time and protein half-life.

Usage

```r
genTimeSteadyStateHeatmap(tRangeFP2, tRangeHlife, n, ramp)
```

Arguments

- `tRangeFP2`: Vector containing two numerics specifying the range of FP2 maturation times.
- `tRangeHlife`: Vector containing two numerics specifying the range of protein half-lives.
- `n`: Integer specifying the number of data points. Choose a higher `n` for a higher pixel density.
- `ramp`: Colour ramp, see `colorRampPalette` for more details.

Value

Returns a ggplot2 heatmap.

Author(s)

Joseph D. Barry

Examples

if (interactive()) vignette(topic="genPaperFigures", package="TimerQuant")
getBreaks10 Get log10 breaks

Description
Return breaks for each half-decade on the log10 scale, e.g. 1, 5, 10, 50, ...

Usage
getBreaks10(x)

Arguments
x A vector of numbers. Breaks will be calculated across the range of x.

Value
A sequence of breaks useful for ticks or labels on the log10 scale.

Author(s)
Joseph D. Barry

Examples
getBreaks10(c(1, 100))

getSpacedSeq Get Spaced Sequence

Description
Return points nicely spaced for on the log10 scale.

Usage
getSpacedSeq(x, n)

Arguments
x A vector of two numbers containing the minimum and maximum of the desired sequence.
n The desired length of the sequence to be returned.

Value
A sequence of numbers with appropriate spacing for the log10 scale.
maturationData

Author(s)
Joseph D. Barry

Examples
getSpacedSeq(c(1, 1000), n=10)

maturationData
Maturation Data

Description
A five-dimensional array of dimensions time (in minutes) x data columns x sample x view x tFT (identified by the RFP since sfGFP is present for all) containing fluorescence intensity readouts for the fluorophore maturation curves.

Usage
maturationData

plotPrimordiumProfile
Plot Primordium Profile

Description
Visualizes primordium signal as a function of position with median and median absolute deviation across samples.

Usage
plotPrimordiumProfile(x, add, ylab, lwd, cex.lab, cex.axis, xlim, ylim, main, col, lty, alpha)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>A matrix of data where rows are samples and columns are sequential positions.</td>
</tr>
<tr>
<td>add</td>
<td>A logical indicating whether or not to add to the existing plot.</td>
</tr>
<tr>
<td>ylab</td>
<td>The y-axis label.</td>
</tr>
<tr>
<td>lwd</td>
<td>Integer specifying width of lines.</td>
</tr>
<tr>
<td>cex.lab</td>
<td>Integer specifying size of labels.</td>
</tr>
<tr>
<td>cex.axis</td>
<td>Integer specifying size of axis labels.</td>
</tr>
<tr>
<td>xlim</td>
<td>An optional vector of length 2 specifying the limits for the x-axis.</td>
</tr>
<tr>
<td>ylim</td>
<td>An optional vector of length 2 specifying the limits for the y-axis.</td>
</tr>
</tbody>
</table>
ratioSteadyState

```
main  # Plot title.
col   # Line colour.
lty   # Style of line
alpha # A numeric between zero and one specifying the level of transparency for the shaded region.
```

Value

A numeric between zero and one specifying the level of transparency for the shaded region.

Produces a plot of signal vs position summarizing across multiple primordium samples.

Author(s)

Joseph D. Barry

Examples

```
if (interactive()) vignette(topic="genPaperFigures", package="TimerQuant")
```

profileGradients

Profile Gradients

Description

A three-dimensional array of dimensions tFT x sample x position containing ratio readouts for migrating posterior lateral line primordia.

Usage

```
profileGradients
```

ratioSteadyState

analytic function ratioSteadyState

Description

Steady-state analytic solution to one-step model for the ratio of mature to non-mature fluorophores.

Usage

```
ratioSteadyState(T1, T2, halfLife, E=0, f=1)
```
arguments

T1 Maturation time of fluorescent protein 1 (FP1, fast maturing).
T2 Maturation time of fluorescent protein 2 (FP2, slow maturing).
halfLife Protein half-life.
E FRET value representing transfer from FP1 to FP2.
f f=f2/f1, the ratio of prefactors relating the number of molecules to fluorescence intensity for each fluorescence channel.

value

A numeric specifying the model steady-state solution for the given parameters.

author(s)

Joseph D. Barry

examples

```r
halfLifeSeq <- seq(1, 2000, by=0.1)
plot(halfLifeSeq, ratioSteadyState(T1=5, T2=100, halfLife=halfLifeSeq),
    type="l", lwd=2, ylim=c(0, 1), xlab="tFT half-life (min)",
    ylab="Steady-state ratio", cex.lab=1.4, log="x", col="red")
```

ratioTimeDependent analytic function ratioTimeDependent

description

Steady-state analytic solution to one-step model for the ratio of mature to non-mature fluorophores.

usage

```
ratioTimeDependent(T1, T2, halfLife, t, E=0, f=1)
```

arguments

T1 Maturation time of fluorescent protein 1 (FP1, fast maturing).
T2 Maturation time of fluorescent protein 2 (FP2, slow maturing)
halfLife Protein half-life.
t Time, which must be non-negative.
E FRET value representing energy transfer from FP1 to FP2.
f f=f2/f1, the ratio of prefactors relating the number of molecules to fluorescence intensity.
Value

A numeric specifying the model time-dependent solution for the given parameters.

Author(s)

Joseph D. Barry

Examples

```r
T1 <- 5; T2 <- 100; halfLife <- 30

plot(tSeq, ratioTimeDependent(T1, T2, halfLife, t=tSeq, E=0, f=1), type="l", lwd=2,
     xlab="time (min)", ylab="ratio", cex.lab=1.4, col="black", ylim=c(0, 0.3))
points(tSeq, ratioTimeDependent(T1, T2, halfLife, t=tSeq, E=0.4, f=1), type="l", lwd=2,
      col="red")
abline(h=ratioSteadyState(T1, T2, halfLife, E=0, f=1), lty=2, col="black")
abline(h=ratioSteadyState(T1, T2, halfLife, E=0.4, f=1), lty=2, col="red")
```

runShinyApps

Run R-shiny applications

Description

Wrapper functions that run shiny apps located in extdata subdirectory of R package.

Usage

```r
runChooseFP2App()
runTimerModellingApp()
```

Author(s)

Joseph D. Barry

Examples

```r
runChooseFP2App()
runTimerModellingApp()
```
signal

Description
Computes timer signal (without additive noise) for a set of model parameters.

Usage
```
signal(T1, T2, TA, TB, E=0)
```

Arguments
- **T1**: Maturation time of fluorescent protein 1 (fast maturing).
- **T2**: Maturation time of fluorescent protein 2 (slow maturing).
- **TA**: Minimum protein half-life.
- **TB**: Maximum protein half-life.
- **E**: FRET value representing transfer from FP1 to FP2.

Value
A numeric specifying the timer signal.

Author(s)
Joseph D. Barry

Examples
- `signal(T1=5, T2=60, TA=30, TB=180, E=0)`
- `signal(T1=5, T2=60, TA=30, TB=180, E=0.5)```

simulatedSignal

Simulated Timer Signal

Description
Additive error model for timer signal.

Usage
```
simulatedRatio(T1, T2, hLife, sigmaAdd, p, E)
simulatedSignal(T1, T2, TA, TB, sigmaAdd, p, E)
simulatedSignalN(T1, T2, TA, TB, sigmaAdd, N, p, E)
```
Arguments

- **T1**: Maturation time of fluorescent protein 1 (FP1, fast maturing).
- **T2**: Maturation time of fluorescent protein 2 (FP2, slow maturing).
- **hLife**: Protein half-life.
- **TA**: Minimum protein half-life.
- **TB**: Maximum protein half-life.
- **sigmaAdd**: Standard deviation of normal distribution from which noise terms are drawn.
- **p**: Protein production rate (molecules produced per unit time).
- **E**: FRET value representing energy transfer from FP1 to FP2.
- **N**: Number of simulation realizations.

Value

Returns simulated values for ratios or timer signal.

Author(s)

Joseph D. Barry

Examples

```r
if (interactive()) vignette(topic="genPaperFigures", package="TimerQuant")
```
Index

* FRETdata
 FRETdata, 4
* datasets
 maturationData, 7
 profileGradients, 8
* fitCV
 fitCV, 3
* genRatioHeatmap
 genRatioHeatmap, 4
* genTimeSteadyStateHeatmap
 genTimeSteadyStateHeatmap, 5
* getBreaks10
 getBreaks10, 6
* getSpacedSeq
 getSpacedSeq, 6
* plotPrimordiumProfile
 plotPrimordiumProfile, 7
* ratioSteadyState
 ratioSteadyState, 8
* ratioTimeDependent
 ratioTimeDependent, 9
* runShinyApps
 runShinyApps, 10
* signal
 signal, 11
* simulatedSignal
 simulatedSignal, 11
* x1
 analyticSolutions, 2
 analyticSolutions, 2
 fitCV, 3
 FRETdata, 4
 genRatioHeatmap, 4
 genTimeSteadyStateHeatmap, 5
 getBreaks10, 6
 getSpacedSeq, 6
 maturationData, 7
 plotPrimordiumProfile, 7
 profileGradients, 8
 ratioSteadyState, 8
 ratioTimeDependent, 9
 runChooseFP2App (runShinyApps), 10
 runShinyApps, 10
 runTimerModellingApp (runShinyApps), 10
 signal, 11
 simulatedRatio (simulatedSignal), 11
 simulatedSignal, 11
 simulatedSignalN (simulatedSignal), 11
 tss (analyticSolutions), 2
 x0ss (analyticSolutions), 2
 x1 (analyticSolutions), 2
 x1fretFP1 (analyticSolutions), 2
 x1fretFP1ss (analyticSolutions), 2
 x1ss (analyticSolutions), 2