Data for DExMA package

Juan Antonio Villatoro-García1,2 and Pedro Carmona-Sáez*

1Department of Statistics and Operational Research. University of Granada
2Bioinformatics Unit. GENYO, Centre for Genomics and Oncological Research
*pedro.carmona@genyo.es

October 26, 2023

packageVersionDExMAdata 1.10.0

Contents

1 Package contents .. 2
2 Sources .. 6
3 Session info ... 6
1 Package contents

Firstly, **DExMAExampleData** contains the objects required to perform the **DExMA** package examples:

- **listMatrixEX**: a list of four expression matrices. The first two matrices contain 200 genes annotated in entrez and the other two contains 175 genes annotated in Official Gene Symbol.

```r
> class(listMatrixEX)
[1] "list"
> head(listMatrixEX$Study1)
Sample1  Sample2  Sample3  Sample4
100859927 5.439524  6.253319  2.926444  4.4304023
  8086  5.769823  5.971453  1.831349  4.0466288
  8212  7.558708  5.957130  2.365252  3.4352889
  65985  6.129288  5.774229  3.670696  3.9171749
   13  7.715065  7.516471  1.349453  0.3390772
```

- **listPhenodatas**: a list of four phenodatas corresponding to the four expression matrices of the listMatrixEX object.

```r
> class(listPhenodatas)
[1] "list"
> head(listPhenodatas$Study1)
condition gender organism race
Sample1 Diseased Female Homo Sapiens AA
Sample2 Diseased Female Homo Sapiens AA
Sample3 Healthy Female Homo Sapiens AA
Sample4 Healthy Female Homo Sapiens H
```

- **listExpressionSets**: a list of four ExpressionSets objects. It contains the same information as **listMatrixEX** and **listPhenodatas** objects.

```r
> class(listExpressionSets)
[1] "list"
> listExpressionSets$Study1
ExpressionSet (storageMode: lockedEnvironment)
assayData: 200 features, 4 samples
element names: exprs
```
ExpressionSetStudy5: an ExpressionSet object similar to the ExpressionSets objects of listExpression

> class(ExpressionSetStudy5)

[1] "ExpressionSet"
attr(,"package")
[1] "Biobase"

ExpressionSet (storageMode: lockedEnvironment)
assayData: 200 features, 6 samples
 element names: exprs
protocolData: none
phenoData
rowNames: newSample1 newSample2 ... newSample6 (6 total)
 varLabels: condition gender organism race
varMetadata: labelDescription
featureData: none
experimentData: use 'experimentData(object)'
Annotation:

maObjectDif: the meta-analysis object (ObjectMA) created from the listMatrixEX
and phenodatas objects information. An ObjectMA is the object type used in the
DExMA package. This type of object is better explained in the DExMA package.

> str(maObjectDif)
List of 4
$ Study1:List of 2
 ..$ mExpres : num [1:200, 1:4] 5.44 5.77 7.56 6.07 6.13 ...
- attr(*, "dimnames")=List of 2
 $: chr [1:200] "100859927" "8086" "8212" "65985" ...
$: chr [1:4] "Sample1" "Sample2" "Sample3" "Sample4"
 ..$ condition: num [1:4] 1 1 0 0
$ Study2:List of 2
 ..$ mExpres : num [1:200, 1:6] 4.37 5.94 5.29 5.69 5.73 ...
- attr(*, "dimnames")=List of 2
 $: chr [1:200] "100859927" "8086" "8212" "65985" ...
$: chr [1:6] "Sample5" "Sample6" "Sample7" "Sample8" ...
 ..$ condition: num [1:6] 1 1 1 0 0 0
$ Study3:List of 2
 ..$ mExpres : num [1:175, 1:4] 4.5 7.24 6.04 4.96 6.15 ...
- attr(*, "dimnames")=List of 2
On the other hand, **IDsDExMA** and **SynonymsDExMA** are the necessary objects to be able to apply the `allSameID()` function of the package *DExMA*.

IDsDExMA is a dataframe that contains the equivalences between the different types of IDs. It also contains a column with the organism to which the annotation refers.

```r
> class(IDsDExMA)
[1] "data.frame"

> length(IDsDExMA)
[1] 4
```
DExMAd data package

```r
> names(IDsDExMA)
[1] "GeneSymbol" "Entrez" "Ensembl" "Organism"
> head(IDsDExMA$Entrez)
[1] "53288" "27777" "27778" "71661" "76253" "78297"
> head(IDsDExMA$Genesymbol)
NULL
> class(SynonymsDExMA)
[1] "data.frame"
> head(SynonymsDExMA)
   Name GeneSymbol Organism
   1  A1m     Pzp      Mus musculus
   2 AI893533 Pzp      Mus musculus
   4    MAM     Pzp      Mus musculus
   5    Pzp     Pzp      Mus musculus
   9  Nat-2    Aanat    Mus musculus
  10    AA-NAT Aanat    Mus musculus

SynonymsDExMA is a data.frame of 3 columns that contains other possible names that a gene can have in a organism and its equivalent annotation in Official Gene Symbol.

```r
> class(SynonymsDExMA)
[1] "data.frame"
> head(SynonymsDExMA)
 Name GeneSymbol Organism
 1 A1m Pzp Mus musculus
 2 AI893533 Pzp Mus musculus
 4 MAM Pzp Mus musculus
 5 Pzp Pzp Mus musculus
 9 Nat-2 Aanat Mus musculus
 10 AA-NAT Aanat Mus musculus

availableIDs is a character vector that contains the different IDs that are available to use in allSameID function. It is recommended to look this object before making use of allSameID function.

```r
> availableIDs
[1] "Entrez" "Ensembl" "GeneSymbol"

availableOrganism is a character vector that contains the different organism that are available to use in allSameID function. Like availableIDs object, it is recommended to look this object before making use of allSameID function.

```r
> availableOrganism
[1] "Bos taurus" "Caenorhabditis elegans"
[3] "Canis familiaris" "Danio rerio"
```
DExMAdata package

5	"Drosophila melanogaster"	"Gallus gallus"
7	"Homo sapiens"	"Mus musculus"
9	"Rattus norvegicus"	"Arabidopsis thaliana"
11	"Saccharomyces cerevisiae"	"Escherichia coli"

2 Sources

`listMatrixEX`, `lisPhenodatas`, `listExpressionSets` and `ExpressionSetStudy5` example objects are synthetic.

The `maObjectDif` example object have been created after applying `createObjectMA()` function from `DExMA` package to `listMatrixEX` and `listPhenodatas` objects.

The `maObject` example object have been obtained after applying `allSameID()` function from `DExMA` package to `maObjectDif`

`IDsDExMA` and `SynonymsDExMA` objects have been constructed using the information available in NCBI GEO [1] and in the NCBI’s gene database [2]

3 Session info

R version 4.3.1 (2023-06-16)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS

Matrix products: default
BLAS: `/home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so`
LAPACK: `/usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0`

locale:
[1] LC_CTYPE=en_US.UTF-8
[3] LC_TIME=en_GB
[5] LC_MONETARY=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8
[9] LC_ADDRESS=C

time zone: America/New_York
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] DExMAdata_1.10.0

loaded via a namespace (and not attached):
[1] BiocManager_1.30.22 compiler_4.3.1 fastmap_1.1.1
[4] BiocStyle_2.30.0 cli_3.6.1 htmltools_0.5.6.1
DExMAdata package

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[7] tools_4.3.1</td>
<td>yaml_2.3.7</td>
<td>Biobase_2.62.0</td>
</tr>
<tr>
<td>[10] rmarkdown_2.25</td>
<td>knitr_1.44</td>
<td>BiocGenerics_0.48.0</td>
</tr>
<tr>
<td>[13] digest_0.6.33</td>
<td>xfun_0.40</td>
<td>rlang_1.1.1</td>
</tr>
<tr>
<td>[16] evaluate_0.22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

https://doi.org/10.1093/nar/gks1193