Exploration of HiC data
Felix Klein, John Marioni, Wolfgang Huber
October 26, 2023

Abstract
While we often think of the genome as a linear object, in reality chromosomes are folded in a highly complex fashion with regions that are located far apart on the same chromosome often coming in contact with one another. For example, many enhancer or insulator elements are located distal to the genes they target and come in contact via folding. Hence, understanding the conformation of chromatin is critical for understanding regulatory mechanisms in a cell. With the advent of next-generation sequencing technology, we can now study chromosome conformation genome-wide using a technique called Hi-C. In brief, after cross-linking, digestion, ligation, and sonication, this technique captures interacting regions of DNA sequence by paired-end sequencing. For example, regions \(i \) and \(j \) might be two non-adjacent regions on the same chromosome in the fragment captured, sequence from region \(i \) is at one end and sequence from region \(j \) is at the other. Having captured these fragments, paired-end sequencing can then be used to assay a small section of sequence from region \(i \) and region \(j \). By mapping these reads back to the reference genome, and by counting the number of reads with one end in region \(i \) and the other end in region \(j \) one can determine the strength of evidence for an interaction between these two regions.

In this practical, we will analyze one of the first Hi-C datasets generated [2]. We will understand how to obtain the data and read them into R, before processing these data to determine some measure of interaction frequency between different regions on a particular chromosome. Finally, we will combine the conformational information with data about other epigenetic modifications to investigate whether there appear to be any interactions between these different data types.

Contents
1 Introduction to the data
2 The adjacency matrix for chromosome 14
3 Comparison with chromatin state data
4 Obtaining the data
5 SessionInfo

1 Introduction to the data
In this lab we will work with the data of the GM06990 cell line obtained from three experiments. Of these, two replicates used the restriction enzyme HindIII and one used NcoI. Altogether, these
experiments produced ca. 8.4 Mio mappable paired-end reads. Here, we only focus on the data of chromosome 14. How the data can be downloaded from the internet and formatted into the dataframe HiC_GM_chr14, which is provided in the package, is described in Section 4 in detail. We follow the analysis of Lieberman-Aiden and pool the three experiments. This is justified by comparing the interaction matrices for each experiment. See Figures 1 B-D in the paper.

The format of HiC_GM_chr14 is explained in the file GSE18199_readme_v4.txt, which we provide in the extdata directory of the package. Briefly, each line corresponds to one paired end alignment. Each line has 9 entries:

read name, chromosome1, position1, strand1, restrictionfragment1, chromosome2, position2, strand2, restrictionfragment2

Of these, the four with last character "1" correspond to the first paired end, and the four with last character "2" to the second paired end. position is position in base pairs where the alignment starts. The alignments are based on the hg18 assembly of the human genome.

2 The adjacency matrix for chromosome 14

As first step, we load the data and have a look at the content of the data.frame. A first visual impression of the interactions is obtained by plotting the position of the first fragment against the position of the second fragment in a scatterplot (Figure 1).

```r
> library(LiebermanAidenHiC2009)
> data("HiC_GM_chr14")
> head(HiC_GM_chr14)

  read name chromosome1 position1 strand1 restrictionfragment1 chromosome2 position2 strand2 restrictionfragment2
  3112130 1:92:364:1569 14 28933774 0 3226
  3112131 1:20:1690:1830 14 18070705 0 0
  3112132 1:65:479:1668 14 18070922 0 0
  3112137 1:72:633:42 14 18071973 1 1
  3112137 1:72:633:42 14 18071973 1 1
  3112145 1:97:353:2040 14 18072740 0 1
  3112148 1:14:1294:1281 14 1807996 0 9

      chromosome2 position2 strand2 restrictionfragment2
  3112130 14 18071096 0 0
  3112131 14 18071075 1 0
  3112132 14 18071183 1 0
  3112137 14 18071976 0 1
  3112145 14 18072977 1 2
  3112148 14 18074297 1 2

> pos = with(HiC_GM_chr14, cbind(position1, position2))
> plot(pos, pch='.', col="#77777777")
```

To create a matrix of intrachromosomal locus–locus interaction frequencies, let us smooth the data using the bkde2D function of the KernSmooth package.

```r
> chrlen = max(pos)
> gridsize = ceiling(chrlen/2e5)
> bandwidth = 3e5
> den = bkde2D( pos, bandwidth=c(1,1)*bandwidth, gridsize=c(1,1)*gridsize)
```
Since the labeling of the reads within a pair as 1 or 2 is arbitrary, and pairwise interaction is a symmetric concept, we symmetrize the matrix by adding the transpose.

> den$fhat <- den$fhat + t(den$fhat)

We use the `image` function to visualise the interaction matrix in false color representation.

> with(den, image(x=x1, y=x2, z=fhat^0.3,
+ col=colorRampPalette(c("white","blue"))(256), useRaster=TRUE))

The result is shown in Figure 2.

- What is the point of the exponentiation (^0.3)? What happens if you do not do it, or use another transformation?

The diagonal is strongly pronounced because the contact frequency is highest for small genomic distances. To normalize for this, and focus on the (possibly interesting) deviations from this general relationship, we calculate the mean number of interactions at a given genomic distance. First we do this for the secondary diagonals and then add the diagonal. The resulting matrix m is plotted in Figure 3.
Figure 2: Interaction matrix obtained from smoothing the positions of paired read alignments. Compare this to Figure 3 A in the paper [2]. Can you explain why the diagonal looks more pronounced here than in the paper, and more off diagonal structures can be seen in the paper. Hint: Try to set a threshold for the maximum value of the data.

```r
> m = matrix(0, nrow=gridsize, ncol=gridsize)
> for(i in 1:(gridsize-1)) {
+   band = (row(m)==col(m)+i)
+   m[band] = mean(den$fhat[band])
+ }
> m = m + t(m)
> diag(m) = mean(diag(den$fhat))

> image(x=den$x1, y=den$x2, z=m^0.3,
+   col=colorRampPalette(c("white","blue"))(256), useRaster=TRUE)
```

Plotting the average number of interactions against the genomic distance is a better way of visualizing the data. It is achieved by plotting the first row (or column as the matrix is symmetric) against genomic distance and shown in Figure 4.

```r
> genomicDistance = den$x1 - min(den$x1)
```
Figure 3: The matrix of average interactions \(m \). It looks like a ridge that falls off on both sides of the diagonal.

\[
\text{averageInteractions} = m[1,]
\]

\[
\text{plot(genomicDistance, sqrt(averageInteractions), type ="l")}
\]

- How can the steep drop be explained?
- What could be an explanation for the bump at the right end of the curve?
- Why might it make sense to plot the square root of average interactions against genomic distance between two loci? Hint: Think about where points lie in three dimensions at a given distance \(r \) from a point of origin \(p \).

With the calculated matrix of average interactions we can normalize our data by dividing the two matrices and plot the result.

\[
\text{fhatNorm} <- \text{den}\$\text{fhat}/m
\]

\[
\text{image}(x=\text{den}\$\text{x1}, y=\text{den}\$\text{x2}, z=\text{fhatNorm},
+ \text{col=colorRampPalette(c("white","blue"))(256), useRaster=TRUE})
\]
By normalizing for one, fairly obvious factor, genomic distance, we have removed uninteresting structure from the raw data, and obtained a possibly more interesting picture in Figure 5. We can see that the plaid pattern is more pronounced than before.

One could think of other factors that might influence the results, like GC content or restriction enzyme biases, and try if a correction for these is worthwhile.

Another view on the data is provided by calculating the correlation matrix, where the entry \((i, j)\) is the correlation of the row \(i\) with row \(j\). Plotting the correlation matrix and using a third color in the plot, we can see that the chromosome basically splits into 2 compartments (blue and red) shown in Figure 6.

```r
> cm <- cor(fhatNorm)
> image(x=den$x1, y=den$x2, z=cm,
+      zlim=c(-1,1),
+      col=colorRampPalette(c("red", "white","blue"))(256), useRaster=TRUE)
```

As next step we perform a principal component analysis on the matrix and retrieve the first two eigenvectors.
Because we want to compare these vectors to ChIP-seq experiments of histone modifications and DNaseI sensitivity, we use run-length encoding (Rle) to store the vectors. The Rle class of the IRanges package provides an efficient way of storing vectors that have long constant runs.

```r
> princp = princomp(cm)
> plot(den$x1, princp$loadings[,1], type="l")
See Figure 7
```

Figure 5: Interaction matrix after division by the expected number of read pairs.

3 Comparison with chromatin state data

We would like to explore the pattern we found in the previous section in the context of chromatin state data. For this we use data that were produced in the Encode project [1]. How these data were obtained and formatted is described in Section 4.
Figure 6: Correlation matrix calculated from the normalized interaction matrix.

The data files contain the following information about ChIP-seq peaks found for chromosome 14:

chromosome, start position, end position, name, score, strand, signal value, pValue, qValue

For each peak, we want the start position, end position and the signal value in this range. To create a Rle vector from the data, we use the following function.

```r
> createRleVector = function(tab){
+   RleVec = Rle(0, max(tab$end))
+   for(i in 1:nrow(tab)){
+     RleVec = RleVec +
+       Rle(values = c(0, tab$signalValue[i], 0),
+         lengths = c(tab$start[i]-1,
+                     tab$end[i]-tab$start[i]+1,
+                     length(RleVec)-tab$end[i]))
+   }
+   RleVec
+ }
```
The Chip-seq data can be loaded from the package and the function can be applied directly.

```r
> data("ChipSeqData")
> H3K27me3 = createRleVector(H3K27me3.df)
> H3K36me3 = createRleVector(H3K36me3.df)
> DNAse1 = createRleVector(DNAse1.df)
> DNAse2 = createRleVector(DNAse2.df)
```

To combine the two DNAse1 replicates we have to make sure that the vectors have the same length.

```r
> length(DNAse1)
[1] 106358944
> length(DNAse2)
[1] 106359236
```

```r
> DNAse = DNAse1 + DNAse2[seq(along=DNAse1)]
```

For plotting the first eigenvector against the ChIP-seq data, we have to make sure that we use the same scale for all plots. Therefore we define a plotting function that covers the same genomic range by setting a fixed x-axis range `xlim`. We also want to plot them on top of each other in one plot and do this by setting `par` accordingly. The result is shown in Figure 8.

```r
> plotRle = function(RleVector, ...){
+   plot(end(RleVector), runValue(RleVector)+1, type="h", log="y",
+       xlim = c(1.5e+7, 107000000), xlab="", ylab=deparse(substitute(RleVector)),
+       ...)    
+ }
```

Figure 7: `princp$loadings[,1]`.
Figure 8: Plots of pc1Vec, H3K27me3, H3K36me3, DNAse1.

```r
> par(mfrow=c(4,1), mai=c(0.5,0.7,0.1,0.1))
> plotRle(pc1Vec)
> plotRle(H3K27me3)
> plotRle(H3K36me3)
> plotRle(DNAse1)
```

From looking at the plots the data seem to correlate quite well. To assess this more quantitatively we calculate the correlation of the vectors. To do this we need to make sure that they all are of same length.
> c(length(H3K27me3),
+ length(H3K36me3),
+ length(DNAse),
+ length(pc1Vec))

[1] 106360575 105401700 106358944 106810060

> x = seq(along=H3K36me3)
> cor(H3K27me3[x], pc1Vec[x])

[1] -0.3783589

> cor(H3K36me3, pc1Vec[x])

[1] -0.4767175

> cor(DNAse[x], pc1Vec[x])

[1] -0.0826722

As you see, the correlation coefficients are less convincing than the visual impression, especially for DNAse1.

• Discuss this topic. Repeat the last steps for the second eigenvector of the principal component analysis.

• Which other analyses or annotations could be done now to put the spatial proximity into a functional context?

4 Obtaining the data

The data associated with the article[2] is available from NCBI Gene Expression Omnibus under the accession GSE18199. From this record, we downloaded the supplementary file GSE18199_RAW.tar and extracted its content.

GSE18199/GSE18199_RAW.tar
$ tar -xvf GSE18199_RAW.tar

From the resulting set of files, we selected six files, whose names are given in the following code chunk. They contain HiC data for the GM06990 cell line from three experiments (two replicates with the restriction enzyme HindIII and one with NcoI). The sample information is summarized in the following table.

> sampleAnnotation =
+ data.frame(
+ file = c("GSM455133_30E0LAAXX.1.maq.hic.summary.binned.txt.gz",
+ "GSM455134_30E0LAAXX.2.maq.hic.summary.binned.txt.gz",
+ "GSM455135_30U85AAXX.2.maq.hic.summary.binned.txt.gz",
+ "GSM455136_30U85AAXX.3.maq.hic.summary.binned.txt.gz",
+ "GSM455137_30305AAXX.1.maq.hic.summary.binned.txt.gz",
+ "GSM455138_30305AAXX.2.maq.hic.summary.binned.txt.gz"),
+)
The format of these files is explained in the file GSE18199_readme_v4.txt, which we provide in the extdata directory of the package or can be downloaded from NCBI Gene Expression Omnibus.

To create the dataframe HiC_GM_chr14 for this practical we used the following code and follow Lieberman-Aiden in pooling the three experiments of the GM06990 cell line. This was justified by comparing the interaction matrices of individual experiment with each other. See Figures 1 B-D in the paper.

```r
> inputDir = "WHERE YOU SAVED THE FILES"
> outputDir = "WHERE YOU WANT TO SAVE THE FILES"
> df = vector(mode="list", length=nrow(sampleAnnotation))
> for(i in seq(along=df)) {
+   cat("Reading file", i, "\n")
+   r = read.table(gzfile(file.path(inputDir, sampleAnnotation$file[i])),
+                   header=FALSE, sep="\t", comment.char = "", stringsAsFactors=FALSE)
+   colnames(r) = c("read name",
+                   "chromosome1", "position1", "strand1", "restrictionfragment1",
+                   "chromosome2", "position2", "strand2", "restrictionfragment2")
+   ## filter chromosome 14
+   df[[i]] = subset(r, (chromosome1==14L) & (chromosome2==14L))
+ }
> HiC_GM_chr14 = do.call(rbind, df)
> save(HiC_GM_chr14, 
+      file=file.path(outputDir, "HiC_GM_chr14.RData"))
```

For comparison with the cromatin state we use Chip-seq data produced within the ENCODE project [1]. It was downloaded from these URLs.

```
$ wget http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeBroadHistone/wgEncodeBroadHistoneGm12878H3k27me3StdPk.broadPeak.gz
$ wget http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeUwDnaseSeq/wgEncodeUwDnaseSeqHotspotsRep1Gm06990.broadPeak.gz
$ wget http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC/wgEncodeUwDnaseSeq/wgEncodeUwDnaseSeqHotspotsRep2Gm06990.broadPeak.gz
```

These files are read into dataframes and saved.

```
> files = c("wgEncodeBroadChipSeqPeaksGm12878H3k27me3.broadPeak.gz",
+          "wgEncodeBroadChipSeqPeaksGm12878H3k36me3.broadPeak.gz",
+          "wgEncodeUwDnaseSeqHotspotsRep1Gm06990.broadPeak.gz",
+          "wgEncodeUwDnaseSeqHotspotsRep2Gm06990.broadPeak.gz")
```
> inputDir = "WHERE YOU SAVED THE FILES"
> outputDir = "WHERE YOU WANT TO SAVE THE FILES"
> cs = vector(mode="list", length=length(files))
> for(i in seq(along=files)) {
+ cat("Reading file", i, ", \n")
+ tab = read.table(gzfile(file.path(inputDir, files[i])), header=FALSE, sep="\t", comment.char = "\n",
+ colnames(tab) <- c("chr", "start", "end", "name", "score", "strand",
+ "signalValue", "pValue", "qValue")
+ cs[[i]] = subset(tab, chr=="chr14")
+ }
> H3K27me3.df = cs[[1]]
> H3K36me3.df = cs[[2]]
> DNAse1.df = cs[[3]]
> DNAse2.df = cs[[4]]
> save(list=c("H3K27me3.df", "H3K36me3.df", "DNAse1.df", "DNAse2.df"), file=file.path(outputDir, "ChipSeqData.RData"))

5 SessionInfo

> toLatex(sessionInfo())

- R version 4.3.1 (2023-06-16), x86_64-pc-linux-gnu
- Time zone: America/New_York
- TZcode source: system (glibc)
- Running under: Ubuntu 22.04.3 LTS
- Matrix products: default
- BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
- LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
- Base packages: base, datasets, grDevices, graphics, methods, stats, stats4, utils
- Other packages: BiocGenerics 0.48.0, IRanges 2.36.0, KernSmooth 2.23-22, LiebermanAidenHiC2009 0.40.0, S4Vectors 0.40.0
- Loaded via a namespace (and not attached): compiler 4.3.1, tools 4.3.1

The output of sessionInfo on the build system after running this vignette.
References
